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Solutions to the radiation diffusion equation predict the absorbed energy �“wall loss”� within an inertial
confinement fusion �ICF� hohlraum. Comparing supersonic versus subsonic solutions suggests that a high Z
metallic foam as hohlraum wall material will reduce hydrodynamic losses, and hence, net absorbed energy by
�20%. We derive an analytic expression for the optimal density �for any given drive temperature and pulse-
length� that will achieve this reduction factor and which agrees well with numerical simulations. This approach
can increase the coupling efficiency of indirectly driven ICF capsules.
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Radiation heat waves, or Marshak waves �1–3�, play an
important role in energy transport and in the energy balance
of laser, z-pinch and heavy ion beam hohlraums for ICF and
high energy density physics experiments. In these experi-
ments, a power source, e.g., a laser, delivers energy to the
interior of a high Z cavity that is converted to x-rays. Typi-
cally, most of the energy is absorbed in a thin, diffusively
heated layer on the hohlraum interior surface, and reemission
from that heated layer sets the radiation temperature T
achieved within the hohlraum.

In our recent paper �3�, �henceforward referred to as HR�
we developed an analytic theory of Marshak waves via a
perturbation theory using a small parameter �=� / �4+��
where the internal energy varies as T� and the opacity varies
as T−�. A consistent theory was built up order-by-order in �,
with the benefits of good accuracy and order-by-order energy
conservation. We first derived analytic solutions for super-
sonic Marshak waves, which remarkably allowed for arbi-
trary time variation of the surface temperature. We then
solved the full set of subsonic equations, though specialized
to the case that the surface temperature varies as tk, where
self-similar solutions can be found. Our solutions compared
very well with exact analytic solutions �for the specialized
cases for which they exist� and with radiation-hydrodynamic
simulations.

In this paper we apply those results to the following ques-
tion: Can we save on driver energy by making hohlraum
walls out of low density high Z foams, which have less hy-
drodynamic motion �namely less radiation heated and ab-
lated material that streams back into the hohlraum interior as
a low density isothermal blow-off� and hence, reduced net
absorbed energy by the walls? We answer this question using
our HR analytic theory, as well as by numerical simulations.
To the degree that the “pure” HR theory diverges from the
simulations we derive nonideal non-self-similar corrections
to the theory that bring it into agreement with the simula-
tions. We show that low-density high Z foams can indeed
bring a savings of �20% in the required driver energy. Re-
markably, this reduction is universal—independent of drive
T and its pulse-duration �. We derive an analytic expression

for the optimal density �for any given T and �� that will
achieve this reduction factor and which agrees very well with
numerical simulations. Such an approach might allow more
routine operation of the National Ignition Facility �NIF� with
laser energy further away from the optics damage threshold,
and still provide the nominal energy �as originally designed
with solid wall hohlraums� to the fuel capsule. Reduced hy-
drodynamic motion of the wall material may also reduce
symmetry swings, as found for heavy ion beam targets �4�.

For the sake of brevity and clarity we will restrict our
study here to a drive that is constant in time for a duration �.
The basic equation for supersonic, diffusive radiative trans-
port in one dimension is
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where e is the internal energy per unit mass, � is the density,
T is the temperature, � is the Stefan-Boltzmann constant, K
is the Rosseland-mean opacity, t is time, and x is the spatial
coordinate. e and K are specified functions of �, T for given
materials given by e= fT��−� and K−1=gT��−� with f , g con-
stants. Higher density means more recombination—hence
more bound electrons to provide greater line opacity; the
fewer free electrons reduce the specific heat as well.

By supersonic, we mean that the velocity of the heat front
is much greater than the speed of sound in the heated mate-
rial. This will occur in low-density high Z foams. We con-
sider the case of constant � since, in the extreme supersonic
limit, hydrodynamic motion is too slow to give rise to den-
sity changes. With �=constant, Eq. �1� gives
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We introduce a dimensionless spatial variable y=x /xF,
where xF is the time-dependent heat front position. In HR we
solved for T�y , t�, for xF, for the absorbed flux F and energy
E, and then successfully compared our analytic solutions to
numerical results from the radiation-hydrodynamics code*Electronic mail: rosen2@llnl.gov
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HYDRA �5�. For this purpose we used a fit to the opacity
and equation of state for gold in the temperature range
1–3 heV �1 heV=100 eV� with temperature in heV
units and � in g/cc: f =3.4 MJ/g, �=1.6, �=0.14,
g= �1/7200. � g/cm2, �=1.5, and �=0.2. If time is in ns
units, then �=1.03	10−2 MJ/ns/cm2. For these values, our
small parameter, �=0.291 and the constant C is given by
4.08	10−7 /�2.06 cm2/ns. For those parameters we found
xF

2= ��2+�� / �1−���CT4+�−��, which, for our case gives
xF�cm�=0.0012 T1.95�0.5 /�1.03. Our solutions there led to the
energy per unit area, E /A, absorbed by the gold wall:

E/A = 0.0029 T3.55�0.5/�0.17 �MJ/cm2�

�for the pure supersonic regime� . �3�

In HR we constructed perturbation solutions to the sub-
sonic equations for the case that the surface temperature var-
ies as tk, where self-similar solutions exist. The basic equa-
tions in Lagrangian form are
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where V=1/� is the specific volume, u is the flow velocity,
and P is the pressure and the mass variable m=��dx. The
effectively infinite density at the ablation front �6–9� means
that we have the boundary conditions u ,V ,T go to 0 at the
heat front as well as T�0, t�=TS�t� at the driven surface. Our
subsonic solutions included the hydrodynamic flow solution
as the density changes in time and space. In the subsonic
case, we again assume power-law dependence of opacity and
equation of state variables as above with the additional con-
dition that P=re/V. The parameter r is assumed to be of
order � �a typical value of r for gold at 1–3 heV is 0.25�.
Employing the self-similar ansatz, the quantity, y=m /mF
with mF the mass coordinate of the heat front, becomes the
similarity variable �analogous to y=x /xF above�. We again
solved for T�y , t�, mF, F and E, and then successfully com-
pared our analytic solutions to numerical results from the

radiation-hydrodynamics code. Those solutions gave self-
similar time dependencies for the ablated mass, mF�t�
=m0TS�t�1.91t0.52 and absorbed flux F�t�=F0TS�t�3.35t−0.41 with
TS�t�=T0tk. For k=0, we found m0=9.90·10−4 g /cm2 and
F0=3.40·10−3 MJ/ns/cm2, and thus �via a simple E=�Fdt
calculation� we get

E/A = 0.0058 T3.35�0.59 �MJ/cm2�

�for the pure subsonic regime� . �5�

Equation �5�, or rather an earlier version that is quantita-
tively similar, has formed for several decades the basis for
understanding the entire hohlraum temperature scaling ex-
perimental data base �9�. The observed scaling is well cap-
tured by a zero-dimensional model that simply compares
sources �x-ray energy produced� to sinks. Typically the sinks
consist of a major term: The E /A wall loss of Eq. �5� times
the wall area, and a minor term of laser entrance hole �LEH�
radiative losses E /A=0.0103 T4 � times the LEH area �a
minor term because the LEH area is so much smaller than
the wall area�. Comparing Eqs. �3� and �5� we see �for a
typical drive of T=2.5 heV and duration �=2 ns� that for
densities in the neighborhood of 0.3 gm/cc there is clearly
less wall loss for the supersonic case. Lowering densities
further decreases opacity and increases specific heat, both in
the undesirable direction of more loss to internal energy.
Raising densities would be desirable as that would lower
wall losses even further, but unfortunately it would take us
into the subsonic regime. The sound speed, CS, at 250 eV in
gold is about 60 �m/ns, which �using the expression for xF
that precedes Eq. �3�� exceeds the supersonic heat front ve-
locity, dxF /dt, at 2 ns when �0 is about 0.5 gm/cc.

In Fig. 1 we plot E /A versus initial �0 of the wall from
Eq. �3� �for T=2.5 and �=2.� and we plot the subsonic �“in-
finite density”� result of Eq. �5� as well. We also plot the
numerical simulation results. Note that Eq. �3� closely
matches the full physics numerical simulations, deep in the
supersonic regime �at very low �0� when little hydrodynamic
motion is expected. When hydrodynamic motion is artifi-
cially turned off in numerical simulations �not shown here�,
Eq. �3� closely matches those artificial simulations for all
densities.

To account for the divergence of the full physics simula-

FIG. 1. �Color online� Wall loss
�0.1 MJ/cm2� vs initial wall density �g/cc�. Dia-
mond points are simulation results. Dashed line:
Eq. �3�. Dotted line: Eq. �5�. Solid line: Eq. �6�.
Dot-dashed line: Eq. �7�. Drive Conditions:
T=250 eV; Duration �: 2 ns
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tions from our self-similar solutions we reason as follows: In
the supersonic regime but at higher �0, rarefactions do in fact
begin to eat into that portion of the heated wall nearest the
drive boundary and hydro motion ensues. Consider an iso-
thermal rarefaction wave propagating leftward �at speed CS�
into an x
0 half space of temperature T and original
constant density �0 which results in low density material
blowing out, rightward. If we define z�x , t�=1+ �x /CSt�, then
the density profile is given by ��x , t�=�0 exp�−z� and the
velocity profile is given by U�x , t�=zCS. Within the rarefac-
tion the kinetic energy per unit area at any given time � can
easily be found by integrating 0.5� U2 over x from −CSt to
infinity and is equal to �0CS

3�. This calculates to
0.0024�0

0.79T2.4��MJ/cm2� and this matches the full physics
simulation’s opinion of the kinetic energy. Also that lower
density profile within the rarefaction leads to a higher spe-
cific heat. This too can be easily found by doing a similar
integral for �e. We find that this lower density profile con-
tributes an additional � / �1−�� fraction of internal energy to
that portion �=CS� /xF� of the heated matter overtaken by the
rarefaction front. �The portion not overtaken is still at its
original density.� For our value of � this becomes
0.0011�0

0.79T2.4��MJ/cm2�. These two effects together now
lead to a corrected E /A for the supersonic regime:

E/A = 0.0029 T3.35�0.5/�0
0.17 + 0.0035�0

0.79T2.4� �MJ/cm2�

�for the full supersonic regime� . �6�

The solid curve in Fig. 1 is Eq. �6� calculated out to the high

�0 edge of the supersonic regime and largely reproduces the
E /A full physics numerical simulation curve throughout the
entire supersonic regime. While these additional energy sinks
reduce the full “bonus” of being supersonic that Eq. �3� na-
ively promises, we still note a nearly 20% reduction from the
solid wall result.

Note too that in Fig. 1, Eq. �5� closely matches the full
physics numerical simulation at the very high end of the
initial-wall-density x axis, deep in the subsonic regime.
However, in the lower density part of the subsonic regime
the simulations differ from the infinite density result. We
believe that is due to the period of time early in the simula-
tion when indeed the heat wave is supersonic and, therefore,

FIG. 2. �Color online� Simulated wall loss �0.1 MJ/cm2� vs ini-
tial wall density �g/cc�. Drive Conditions: T=250 eV; Duration �:
Circles: 1 /4 ns. Triangles: 1 ns. Diamonds: 4 ns. Squares: 16 ns.

FIG. 3. �Color online� �a� Optimal density �g/cc�, and �b� Opti-
mal wall loss �0.1 MJ/cm2�, both vs pulse duration �ns�. Drive con-
ditions: T=250 eV: Upper solid curves: Theory �Eqs. �8a� and
�8b��. Squares: Simulations. T=125 eV: Lower dotted curves:
Theory �Eqs. �8a� and �8b��. Diamonds: Simulations.
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less lossy. As the initial density, �0, decreases, an increas-
ingly longer early-time duration of supersonicity exists. We
can correct for this by first finding tcatch=0.17 T2.3�0

−1.9, the
time when the rarefaction front, CSt, catches up to the heat
front �the xF�t� that precedes Eq. �3��. We then subtract the
subsonic E /A�t= tcatch� of Eq. �5� from E /A��� of Eq. �5� and
add in its stead the supersonic E /A�t= tcatch� of Eq. �6�. For
our gold parameters, the procedure outlined above leads to a
simple expression for the correction:

E/A �MJ/cm2� = 0.0058 T3.35�0.59 − 0.002 T4.7/�0
1.1

�for the fullsubsonic regime� . �7�

This result largely reproduces the E /A simulation curve
throughout the entire subsonic regime, as seen in the dot-
dashed curve of Fig. 1.

Since the minimum of E /A versus �0 occurs at densities
low enough to be within the supersonic regime, we can eas-
ily take the E /A derivative with respect to �0 in Eq. �6� and
find the optimal density, �*:

�* = 0.17 T1.2�−0.5g�0.52f�−1.04. �8a�

In the above we explicitly included the scaling of the opacity
and specific heat coefficients �the prime denotes them being
scaled to their nominal values which were given above� so
that this formula can be used more generally. Plugging this
back into Eq. �6� gives us the minimum E /A*:

E/A* = 0.0048 T3.35�0.59f�0.68g�0.41. �8b�

Comparing this to the E /A of the very high density �solid
and above� regime of Eq. �5� we see that they scale exactly
the same way. Thus their ratio implies a universal �indepen-
dent of T and �� savings of 17% when the optimal �* is
chosen as the initial wall density. �Also, self-consistently, �*

“universally” falls within the supersonic regime�.
Figure 2 shows the simulation results for E /A for

T=2.5 heV versus initial wall density, for � varying between
0.25 and 16 ns. The shift of optimal density with � is some-
what visible. Figure 3�a� explicitly shows the optimal densi-
ties, �*, from those simulations versus �, as well as for an-
other set of runs at T=1.25 heV. They compare very well
with Eq. �8a�. Figure 3�b� does the same for E /A. Figure 4
shows results from the T=1.25 heV simulation set, wherein
we plot the resultant E /A curves �normalized by their values
at solid density� versus initial density, for 3 pulse lengths

varying from 1 to 64 ns. We clearly see the “universal”
nature—the energy savings �versus a solid wall� at the opti-
mal density for each � is the same value �of about 16%�, very
close to our predictions.

As a final application of Eq. �8a� we consider a published
design �4� of a heavy ion reactor scale hohlraum. It has been
optimized via tedious full two-dimensional �2D� simulations
and a foam density of 0.1 gm/cc is arrived at. It is Au-Gd
and as such g�=0.62, f�=1.04, with T=2.5 and t=8, leading
to our prediction of an optimal density of 0.13 gm/cc quite
close to the optimized design value.

This approach should not be confused with well-known
design features such as low Z gas filled hohlraums. The gas
does not substantially “hold back the gold walls” and thus
does not substantially save energy due to eliminating much
kinetic energy. The gas merely replaces the very low density
part of the isothermal high Z rarefaction �which carries very
little of the total kinetic energy� with low Z gas to allow the
laser to progress unimpeded �unabsorbed� to closer to the
hohlraum wall for better symmetry control.

In summary, on the basis of our HR theory, as well as on
the basis of numerical simulations, we have shown that hohl-
raum walls made of low density high Z foams can decrease
wall loss by �20%. While our previous work allowed us to
correctly predict the wall loss only at the two extremes of
initial wall density, as shown in Fig. 1, we discovered dis-
crepancies at intermediate densities. We were able to theo-
retically account for nonideal non-self similar effects in that
transonic regime and thereby restore agreement with the nu-
merical simulations therein. We derived an analytic expres-
sion, that for any T ,� allowed us to easily find a �* that
achieves this wall loss reduction.

Using foams may have further advantages. Reduced hy-
drodynamic motion of the wall material may also reduce
symmetry swings, as found for heavy ion targets �2�. De-
tailed calculations will need to be done to further assess this
aspect. More complex pulse shapes, and graded foam wall
density profiles are also future work. Other effects such as
“cocktail” walls �10� that have higher opacity due to a mix-
ture of materials also calculate to save 20%. Small axial
shields halfway between the fuel capsule and the laser en-
trance hole effectively make a hotter “inner hohlraum” �11�
and also calculate to save 20% in driver energy to achieve
the same capsule drive. These three 20% effects are indepen-
dent of each other and are thus additive, leading perhaps to a
full 50% reduction in driver energy. �There is always leakage

FIG. 4. �Color online� Simulated wall loss
�normalized by wall loss at solid initial density�
vs initial wall density �gm/cc�. Drive Conditions:
T=125 eV; Duration �: Triangles: 64 ns.
Squares: 8 ns. Diamonds: 1 ns.
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out the laser entrance holes that will slightly reduce these
energy savings estimates.� Since the axial shield effect has
already been observed �11�, and initial data on cocktails �10�
has already shown its promise as well, we suggests here an
experiment to measure the predicted effect of lowering the
hohlraum wall density. Using Eq. �8b� in the context of a
simple “source=sink” model �2,9,11� implies a T higher by
0.83−0.3 or a factor of 1.06. Accounting for typical LEH
losses would lower that estimate somewhat, and lead us to
predict a wall that should be emitting 16% brighter—an ob-
servation well within diagnostic capabilities.

By combining all three 20% energy savings schemes, this
50% total reduction can allow NIF to operate routinely far

below damage thresholds and still provide the requisite en-
ergy for experiments previously designed for full NIF energy
�which is very near the damage threshold� operating with
conventional hohlraums. In the longer term these effects may
cut the reactor driver needs in half and thus reduce initial
capital costs.
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